
© 2019 Cray Inc.

swarren@cray.com

O p t i m i z i n g f o r I n t e l X e o n P h i

K n i g h t s L a n d i n g

Steven Warren

© 2019 Cray Inc.

© 2019 Cray Inc.

• Make KNL run my code faster!

• Vectorization

• Cache blocking

• --exclusive

Outline

© 2019 Cray Inc.

• Many KNL-specific optimizations involve MCDRAM in “Flat” mode

• Since Cori uses “cache” mode, these optimizations generally do not apply

• If application can strong scale efficiently, can use enough nodes such that the
memory footprint/node is less than 16 GB and fit into MCDRAM

• KNL is an x86 processor, thus many of the things you would do for any x86
processor will apply

• i.e., work done to improve KNL performance will generally improve
performance on other modern processors as well

Optimizing for Intel Xeon Phi Knights Landing

© 2019 Cray Inc.

• Strengths

• MCDRAM memory bandwidth

• Effectively a large L3 in “cache” mode (no dedicated L3 on KNL)

• Larger L2 per core (1 MB / 2-core tile)

• AVX512 vectors

• Allows more operations per cycle than previous generations of processors

• Weaknesses

• Clock GHz

• Affects scalar operations

• Optimization strategy

• Vectorize and/or cache block important kernels

5

KNL strengths and weaknesses

© 2019 Cray Inc. 6

But first, a note about affinity…

© 2019 Cray Inc. 7

The following NERSC slides
stolen from Helen. Thanks Helen!

© 2019 Cray Inc.

• XTHI is a very useful application that will tell you whether or not you are getting
the expected placement behavior.

• https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

• Different compilers and MPI stacks have different affinity rules

• i.e., what works for Intel likely will not work for Cray or GNU

• Replace the call to your application binary to the xthi binary in your srun line to
check affinity.

• Can do this at any scale, but it’s best to change the number of PEs to use a
single node to avoid confusion of the output.

8

xthi.c

https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

© 2019 Cray Inc. 9

© 2019 Cray Inc. 10

© 2019 Cray Inc. 11

© 2019 Cray Inc. 12

© 2019 Cray Inc. 13

• Verify with XTHI before running your code!

© 2019 Cray Inc. 14

But second… Dynamic vs Static linking on KNL

© 2019 Cray Inc.

• Lines 248 – 249 in qb.C require glibc, which is a collection of dynamic libraries in
many current operating systems

• if (getlogin() != 0)
cout << "<user> " << getlogin() << " </user>" << endl;

• Performance can be greatly increased on KNL for statically linked executables.

15

Dynamic vs Static Linking for Qbox on KNL

© 2019 Cray Inc.

• Can statically link in Cray Libsci libraries (executable remains dynamic) to alleviate some
of the performance loss by setting:

• LIBS = -Wl,-Bstatic -lsci_cray_mpi_mp -lsci_cray_mp \
-lfftw3f_mpi -lfftw3f_omp -lfftw3f -lfftw3_mpi \
-lfftw3_omp -lfftw3 -Wl,-Bdynamic

• Or compile fully static but add extra compile flags to qb.C:

• '-Dmain=stealthy(){return 0;} char* stealth(){return getenv("USER");} int main' -
Dgetlogin=stealth

• Or one could simply modify the code in qb.C to use getenv() instead of getlogin() and
compile fully static.

16

Options to link statically

© 2019 Cray Inc.

• For a 256 node, 880 atom Qbox run using 32 MPI ranks/node and 2 OpenMP
threads/rank with nrowmax set to 256 yields the following results:

17

Dynamic vs Static Linking for Qbox on KNL

Link type Dynamic

Linking

Static

Linking

Dynamic Linking

with Statically

Linked Cray

Libsci libraries

max time

(run time)

330 s 198 s 215 s

© 2019 Cray Inc.

Example
Analys is and
Opt imizat ions:

Vectorization

18

© 2019 Cray Inc.

• Vectorization is the practice of converting an algorithm to work on a set of values
simultaneously instead of a single value one-by-one.

19

What is vectorization?

What prevents vectorization?

• Complexity in loops which the compiler can not interpret

• Indirect memory accesses

• Logical statements

• Recurrences on variables

© 2019 Cray Inc.

• CCE can provide “listing” files with
compilation which will give an easily
interpreted and detailed description
of every line in your source

• -hlist=a

• Intel and GNU compiler provide
similar capabilities.

• Use the listing file to determine if
your changes allow the compiler to
apply better optimizations

• You do NOT need to execute the
code to check if the compiler
applies optimizations

20

How To Know If Your Loops Are Vectorizing
%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers

------- ---- ---- ---------

A - Pattern matched a - atomic memory operation

b – blocked

C - Collapsed c - conditional and/or computed

D - Deleted

E - Cloned

F - Flat - No calls f – fused

G - Accelerated g – partitioned

I - Inlined i – interchanged

M - Multithreaded m – partitioned

n - non-blocking remote transfer

p – partial

R - Rerolling r – unrolled

s – shortloop

V - Vectorized w – unwound

+ - More messages listed at end of listing

--

© 2019 Cray Inc.

• There is a recurrence on the scalar ‘PF’

• Use the ‘explain’ tool to learn more about what a recurrence is

Example Loop

67. 1 2 PF = 0.0

68. + 1 2 3--< DO 44030 I = 2, N

69. 1 2 3 AV = B(I) * RV

70. 1 2 3 PB = PF

71. 1 2 3 PF = C(I)

72. 1 2 3 IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)

73. 1 2 3 AA = E(I) - E(I-1) + F(I) - F(I-1)

74. 1 2 3 1 + G(I) + G(I-1) - H(I) - H(I-1)

75. 1 2 3 BB = R(I) + S(I-1) + T(I) + T(I-1)

76. 1 2 3 1 - U(I) - U(I-1) + V(I) + V(I-1)

77. 1 2 3 2 - W(I) + W(I-1) - X(I) + X(I-1)

78. 1 2 3 A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I)

79. 1 2 3--> 44030 CONTINUE

ftn-6254 ftn: VECTOR LP44030, File = lp44030.f, Line = 68

A loop starting at line 68 was not vectorized because a recurrence was found on "pf"

at line 71.

> explain ftn-6254

© 2019 Cray Inc.

Example

0

500

1000

1500

2000

2500

3000

3500

4000

4500

knl hsw bdw1

M
fl
o
p
s

Baseline Performance
Single Core

baseline

© 2019 Cray Inc.

What’s Preventing Vectorization?

• Let’s do a vector dependency analysis assuming VL=2

• Vectorization may be possible with modification, but loop is not concurrent safe

𝑃𝐵
2
3

∝ 𝑃𝐹
1
2

68. + 1 2 3--< DO 44030 I = 2, N

…

70. 1 2 3 PB = PF

71. 1 2 3 PF = C(I)

72. 1 2 3 IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)

…

78. 1 2 3 A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I)

𝑃𝐹
2
3

∝ 𝐶
2
3
4

A
2
3

∝ 𝑃𝐵, 𝑃𝐹 → 𝑃𝐹
1
2
3

Compiler would promote

scalars to vectors

Compiler will not promote

PF to a 3 element vector

© 2019 Cray Inc.

• Convert PF from a scalar to a vector (1-D array)

• Warning! Be cognizant of how changing this variable may affect other
regions of the code

• Is PF a global or local variable? Is the final result of PF used
elsewhere?

• May need to use a temporary variable array for the loop and store
back into PF if needed

• Eliminates the need for the PB scalar variable in the loop

What can we do to vectorize this loop?

© 2019 Cray Inc.

• What optimizations did the compiler apply to our new version?

• How does the performance of this version compare with the original?

Optimization changes

66. 1 2 VPF(1) = 0.0

67. 1 2 Vr2--< DO 44031 I = 2, N

68. 1 2 Vr2 AV = B(I) * RV

69. 1 2 Vr2 VPF(I) = C(I)

70. 1 2 Vr2 IF ((D(I) + D(I+1)) .LT. 0.) VPF(I) = -C(I+1)

71. 1 2 Vr2 AA = E(I) - E(I-1) + F(I) - F(I-1)

72. 1 2 Vr2 1 + G(I) + G(I-1) - H(I) - H(I-1)

73. 1 2 Vr2 BB = R(I) + S(I-1) + T(I) + T(I-1)

74. 1 2 Vr2 1 - U(I) - U(I-1) + V(I) + V(I-1)

75. 1 2 Vr2 2 - W(I) + W(I-1) - X(I) + X(I-1)

76. 1 2 Vr2 A(I) = AV * (AA + BB + VPF(I) - VPF(I-1) + Y(I) - Z(I)) +

A(I)

77. 1 2 Vr2--> 44031 CONTINUE

ftn-6005 ftn: SCALAR LP44030, File = lp44030.f, Line = 67

A loop starting at line 67 was unrolled 2 times.

ftn-6204 ftn: VECTOR LP44030, File = lp44030.f, Line = 67

A loop starting at line 67 was vectorized.

© 2019 Cray Inc.

Original vs Vectorized performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

knl hsw bdw1

M
fl
o
p
s

Performance Single Core

baseline

© 2019 Cray Inc.

Example
Analys is and
Opt imizat ions:

Cache blocking

27

© 2019 Cray Inc.

• Data reuse will be critical to performance

• Reuse out of MCDRAM will reduce requirements on main memory

• Reuse out of lower levels of cache will lower requirements on MCDRAM

• In order to know how to cache block properly we need to know the trip counts of
loops and the sizes of various arrays as accurately as possible

28

Data Reuse will be important

© 2019 Cray Inc.

A SIMPLE EXAMPLE

• 2D 5-point Laplacian

do j = 1, 8
do i = 1, 16

d(i,j) = u(i-1,j) + u(i+1,j) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)

end do
end do

• Simple cache structure for this example:

• Assume each cache line holds 4 array elements

• And cache can hold 12 lines of u data

• No cache reuse between outer loop iterations

29

34679101213151830120

© 2019 Cray Inc.

BLOCKING = STRIPMINE + INTERCHANGE

do j = 1, 8
do i = 1, 16

d(i,j) = stencil
end do

end do

Stripmine

do j = 1, 8
do IBLOCK = 1, 16, 4

do i = IBLOCK, IBLOCK+3
d(i,j) = stencil

end do
end do

end do

Interchange

do IBLOCK = 1, 16, 4
do j = 1, 8

do i = IBLOCK, IBLOCK+3
d(i,j) = stencil

end do
end do

end do
Blocked!

30

© 2019 Cray Inc.

BLOCKING TO INCREASE REUSE

31

3467891011122080

• Block the inner loop

do IBLOCK = 1, 16, 4

do j = 1, 8

do i = IBLOCK, IBLOCK + 3

d(i,j) = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

• Now we have reuse of the j+1 data

© 2019 Cray Inc.

EVEN BETTER!

32

• Iterate over 4×4 blocks for better spatial locality

do JBLOCK = 1, 8, 4

do IBLOCK = 1, 16, 4

do j = JBLOCK, JBLOCK + 3

do i = IBLOCK, IBLOCK + 3

d(i,j) = u(i-1,j) + u(i+1,j) &

- 4*u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

end do

• CCE has directives for this

• !dir$ blockable(i,j)

• !dir$ blockingsize(4)

34678910111213151617183060

© 2019 Cray Inc.

Example
Analys is and
Opt imizat ion:

miniGhost

33

© 2019 Cray Inc.

• “mini-app” from the NERSC8 procurement.

• 27-point 3-D stencil application

• Simulates diffusion

• Like most stencil codes, it is main memory bandwidth bound

• Data reuse will lessen contention for memory accesses

34

Example app: miniGhost

© 2019 Cray Inc.

• Craypat suggests the following loop is about ~50% of the run time

• CCE does vectorize and also attempts to cache block the inner loop, but can we
do better?

35

Main compute loop

© 2019 Cray Inc.

• CCE may attempt to cache block for L2 based upon the targeted architecture.

• Generally, L1 is too small and L3 is too “slow”

36

Listing file explanations

© 2019 Cray Inc. 37

Blocking = Stripmine + Interchange

© 2019 Cray Inc. 38

Listing file explanations

© 2019 Cray Inc.

• Typically, you want a larger amount of the inner iteration with smaller amounts in
the other loops

• Depends on the loop characterization and what data should be / could be /
need to be reused

• Powers of 2 generally are best if full index can not be held in cache

• Depending on the particular problem size, a proper cache blocking can provide a
50% speed-up for this particular loop on KNL

• May see smaller impact on earlier Xeon processors since L2 misses are
supported by an L3 cache.

39

How to set the correct block sizes

© 2019 Cray Inc.

• Code Characterization is an important first step in preparing for KNL

• Target Science

• Target Scaling

• Hotspot identification

• Process affinity is critical for run performance

• Statically linked binaries likely to perform better than dynamically linked binaries.

• KNL node is different from XEON node

• Single node optimizations will be an early focus

• A properly designed kernel will help with optimization efforts

• Vectorization is important and will become even more so with future processors

• Data reuse is important, but how important will depend on memory footprints and access patterns

40

Summary

THANK YOU

Q U E S T I O N S ?

swarren@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

